The Aeroscope – an upgraded version controlled by virtual joystick

June 12, 2011

This is an upgraded version of the aeroscope. Besides improving of certain aspects of the old version, this version has both the main wing and the horizontal stabilizer controlled by a virtual joystick (presented on this blog before and used extensively). The horizontal movement of the joystick controlls the angle of attack of the main wing and the vertical movement controlls the angle of attack of the horizontal stabilizer. I…

Read More >>

Longitudinal Aircraft Dynamics #4 – virtual aircraft definition

May 27, 2011

This section of the tutorial explains how to create the  2D aircraft components for the animated longitudinal stability model. The first part deals with extracting the x-y coordinates for the fuselage, canopy, vertical stabilizer and rudder. The second part handles the main wing airfoil and the horizontal stabilizer airfoil. All thses parts will be put together in the next section.

Read More >>

Longitudinal Aircraft Dynamics #2 – 2D polynomial interpolation of parameters cl, cd and cm

May 24, 2011

In the previous section, the main wing airfoil and the horizontal stabilizer airfoil were simulated using Xflr5. The three coefficients, lift, drag and moment were then interpolated on charts in Excel using 4th and 5th order polynomials. This section shows a few tricks about how to easily introduce those 60 equations as spreadsheet formulas in Excel ranges. It also presents a simple linear interpolation method across the Reynolds number range. We need to do this since we simulated…

Read More >>

Longitudinal Aircraft Dynamics #1 – using Xflr5 to model the main wing, the horizontal stabilizer and extracting the polynomial trendlines for cl, cd and cm

May 23, 2011

This is a tutorial about using a free aerodynamic modeling package (Xflr5) to simulate two airfoils in 2D (the main wing and the horizontal stabilizer) for ten different Reynolds numbers, then using Excel to extract the approximate polynomial equations of those curves (cl, cd and cm) and based on them, simulate a 2D aircraft as an animated model. This section deals with the aero modeling and the 4th and 5th order polynomial extraction.

Read More >>

Aerodynamics Naive #3 – a brief introduction to Xflr5, a virtual wind tunnel

May 19, 2011

The previous section implemented and charted the ping-pong polar diagrams in a spreadsheet and showed a reasonble similarity, for moderate angles of attack, between these diagrams and the ones modeled using Xflr5, a virtual wind tunner. This section introduce the  concept Reynolds number and it also contains a very brief introduction to Xflr5, the free virtual wind tunnel software.

Read More >>